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We present a continuation of our theoretical research into the influence of co-solvent polarizability on
a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann
theory, using the formalism of density functional approach on the level of local density approxi-
mation taking into account the electrostatic interactions of ions and co-solvent molecules as well
as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the
three-component symmetric lattice gas model as a reference system and minimizing the grand
thermodynamic potential with respect to the electrostatic potential. We apply present modified
Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the
excluded volume of co-solvent molecules and ions slightly changes the main result of our pre-
vious simplified theory. Namely, in the case of small co-solvent polarizability with its increase
under the enough small surface potentials of electrode, the differential capacitance undergoes the
significant growth. Oppositely, when the surface potential exceeds some threshold value (which is
slightly smaller than the saturation potential), the increase in the co-solvent polarizability results
in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some
threshold value, its increase generates a considerable enhancement of the differential capacitance in
a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the
differential capacitance are related to the depletion and adsorption of co-solvent molecules at the
charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte
solution can shift significantly the saturation potential in two qualitatively different manners. Namely,
a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher
surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation
potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes
the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration
in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the
co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential
profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some
threshold value, its further increase leads to decrease in electrostatic potential at all distances from
the electrode. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948634]

I. INTRODUCTION

The Poisson-Boltzmann (PB) equation is the simplest
and very efficient tool for describing distribution of charged
particles near the macroscopic charged objects in many
areas, such as biophysics, electrochemistry, and chemical
engineering.1 As is well known, the PB equation is based
on the mean-field theory that makes its application to real
systems quite problematic. First, the mean-field theory itself
does not allow us to take into account the effects of the ionic
correlations that are crucial for medium and high concentrated
electrolyte solutions. Second, considering the solvent as a
continuous dielectric medium makes it impossible to study

a)urabudkov@rambler.ru

the effects of the solvent molecular structure. These two
factors have motivated the researchers to improve the PB
equation in the last two decades.2,3 At present, great efforts
have been made to modify the PB equation with respect to
ionic correlations,4–9 the dipole structure of the solvent,10–13,15

polarizability and permanent dipole of ions14,15 as well as their
excluded volume,16–21 the dielectric decrements of ions,22–24

and finally solvent quadrupolarizability.25

Most of these researches are devoted to the influence of
the different microscopic ionic parameters on the macroscopic
quantities of the electric double layer, such as local
concentration of ions on the electrode, disjoining pressure,
and double layer differential capacitance. The latter is one
of the most important quantities for the electrochemical
applications. In a recent work,26 we showed in the framework

0021-9606/2016/144(18)/184703/8/$30.00 144, 184703-1 Published by AIP Publishing.
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of the field-theoretical approach that if an electrolyte solution
is mixed with some strongly polarizable dielectric co-solvent,
then the variation of the differential capacitance becomes
the greater the stronger the polarizability grows. We also
demonstrated that in contrast to the co-solvent polarizability,
the permanent dipole of the co-solvent molecules only slightly
affects the differential capacitance. Moreover, due to the fact
that the above mentioned theory described the ions and co-
solvent molecules as point particles, the effects of the excluded
volume were fully ignored. However, as was clearly showed
by Kornyshev18 in the framework of lattice gas model, the
excluded volume of ions must strongly affect the value of
differential capacitance in the region of high surface potentials.

In this work, we continue our theoretical research into
the co-solvent polarizability influence on the double layer
differential capacitance. We obtain the expression for the
grand thermodynamic potential as a functional of electrostatic
potential profile within the density functional approach on the
level of local density approximation, taking into account the
electrostatic interactions of ions and co-solvent molecules as
well as their excluded volume. We derive the modified PB
equation, considering the three-component symmetric lattice
gas model as a reference system and minimizing the grand

thermodynamic potential with respect to the electrostatic
potential. We apply this equation to the theory of electric
double layer, studying the behavior of differential capacitance
and local co-solvent concentration on the electrode as the
functions of surface potential as well as a behavior of
electrostatic potential profile with varying the polarizability
and concentration of co-solvent in the bulk solution.

II. THEORY

A. General formalism

We consider an electrolyte solution containing N+ ions
carrying a charge q+ > 0, N− ions carrying a charge q− < 0,
and a solvent that we shall model as a continuous dielectric
medium with dielectric permittivity εs. Moreover, we consider
N molecules of a co-solvent, which have a polarizability α.
To describe the thermodynamic properties of such system, we
shall use the variant of density functional theory at the level of
local density approximation developed recently in the work.19

The grand thermodynamic potential of the electrolyte
solution mixed with the polarizable co-solvent can be written
as

Ω = −


ε(r)(∇ψ(r))2
8π

dr +


ρc(r)ψ(r)dr +


( f (c+(r),c−(r),n(r)) − µ+c+(r) − µ−c−(r) − µn(r)) dr, (1)

where ε(r) = εs + 4παn(r) is the local dielectric permittivity, c±(r) is the local concentrations of ions, n(r) is the local
concentration of co-solvent, ρc(r) = q+c+(r) + q−c−(r) is the charge density, and f is the density of free energy of the reference
system (see below).

Rewriting grand thermodynamic potential (1) as

Ω =

 (
−εs(∇ψ)

2

8π
+ f (c+,c−,n) − (µ+ − q+ψ)c+ − (µ− − q−ψ)c− −

(
µ +

α

2
(∇ψ)2

)
n
)

dr, (2)

and using the thermodynamic relation for the pressure

P = c+µ+ + c−µ− + nµ − f , (3)

we eventually obtain

Ω[ψ] = −
 (

εs(∇ψ)2
8π

+ P(µ+ − q+ψ, µ− − q−ψ, µ +
α

2
(∇ψ)2)

)
dr. (4)

Thus, if the explicit function P = P(µ+, µ−, µ) is known, one can obtain the explicit equation for the electrostatic potential ψ(r)
by minimizing functional (4). To take into account the excluded volume of co-solvent and ions, we consider the lattice gas
model (without the attractive Van-der-Waals interactions between the particles) as a reference system for which the explicit
dependence P = P(µ+, µ−, µ) is well known,

P =
kBT
v

ln
�
1 + eβµ+ + eβµ− + eβµ

�
, (5)

where v is the volume occupied by a particle of lattice gas, T is the temperature, kB is the Boltzmann constant, and β = 1/kBT .
Therefore, we obtain the following functional:

Ω[ψ] = −
 (

εs(∇ψ)2
8π

+
kBT
v

ln
(
1 + eβ(µ+−q+ψ) + eβ(µ−−q−ψ) + eβ(µ+ α2 (∇ψ)2))) dr. (6)

Further, minimizing functional (6) and using the expressions for the chemical potentials of species

µ± = kBT ln
c±,bv

1 − v(c+,b + c−,b + nb) ,

µ = kBT ln
nbv

1 − v(c+,b + c−,b + nb) ,
(7)
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we arrive at the modified Poisson-Boltzmann equation with accounting for the polarizability of co-solvent molecules, their
excluded volume, and the excluded volume of electrolyte ions

∇(ε(r)∇ψ(r)) = − 4π
�
q+c+,be−βq+ψ(r) + q−c−,be−βq−ψ(r)

�

1 + v
(
c+,b

�
e−βq+ψ(r) − 1

�
+ c−,b

�
e−βq−ψ(r) − 1

�
+ nb

(
e
βα
2 (∇ψ(r))2 − 1

)) , (8)

where c±,b is the bulk concentrations of ions, nb is the bulk co-solvent concentration;

ε(r) = εs + 4παnbe
βα
2 (∇ψ(r))2

1 + v
(
c+,b

�
e−βq+ψ(r) − 1

�
+ c−,b

�
e−βq−ψ(r) − 1

�
+ nb

(
e
βα
2 (∇ψ(r))2 − 1

)) (9)

is the local dielectric permittivity of the electrolyte solution. When there are no co-solvent molecules in the electrolyte solution
(nb = 0), we arrive at the equation obtained first by Borukhov et al.16 and Kornyshev,18

εs∇2ψ(r) = − 4π
�
q+c+,be−βq+ψ(r) + q−c−,be−βq−ψ(r)

�

1 + v
�
c+,b

�
e−βq+ψ(r) − 1

�
+ c−,b

�
e−βq−ψ(r) − 1

�� . (10)

In limit of the point particles (when v → 0), Equation (8) looks as follows:

∇(ε(r)∇ψ(r)) = −4π
(
q+c+,be−βq+ψ(r) + q−c−,be−βq−ψ(r)

)
,

(11)

where ε(r) = εs + 4παnbe
βα
2 (∇ψ(r))2 is the local dielectric permittivity in the approximation of point particles. It should be noted

that Equation (11) was obtained in the recent work26 within the field-theoretical approach.

B. Theory of electric double layer

As an application of the modified PB equations (8) and (9), we formulate the generalized Kornyshev’s theory.18,27 We
consider a system containing a charged electrode, which we shall model as a charged flat surface with a surface charge density σ,
the ions of 1:1 electrolyte (i.e., when q+ = −q− = e; e is the elementary charge), and the molecules of the polarizable co-solvent
with a polarizability α. In this case, the average concentrations of ions in the bulk are equal, i.e., c+,b = c−,b = c. Choosing z
axis perpendicular to the electrode and placing the origin on it, one can write the grand thermodynamic potential per unit area
of the electrode as follows:

Ω[ψ] = −
∞

0

dz
(
εs(ψ ′(z))2

8π
+

kBT
v

ln
(
1 + eβ(µ+−eψ(z)) + eβ(µ−+eψ(z)) + eβ

(
µ+ α2 (ψ′(z))2))) . (12)

Since the integrand in (12) does not depend on coordinate
z explicitly, the Euler-Lagrange equation has a first integral
that determines the condition of the solution mechanical
equilibrium

P
(
µ+ − eψ, µ− + eψ, µ +

αE2

2

)
− εsE

2

8π

− αE2n
(
µ+ − eψ, µ− + eψ, µ +

αE2

2

)
= P (µ+, µ−, µ) , (13)

where the local electric field E(z) = −ψ ′(z) and the local
co-solvent concentration n = ∂P/∂µ are introduced. The first
term in the left-hand side of Eq. (13) determines the pressure
that is related to the excluded volume of particles, whereas the
second and third terms determine the so-called disjoining
pressure contribution, which is due to the electrostatic
interactions.27

Further, substituting the expressions for the bulk chemical
potentials of species (7) and for pressure (5) into Equation (13),
we eventually obtain

1 +
(
2c (cosh(βeψ(z)) − 1) + nb

(
e
βαE2(z)

2 − 1
))

× v = e

v
kBT

*.......
,

εsE2(z)
8π +

αnbE
2(z)e

βαE2(z)
2

1+
*..
,
2c(cosh βeψ(z)−1)+nb

*..
,
e
βαE2(z)

2 −1
+//
-

+//
-
v

+///////
-.

(14)

In the limit v → 0, we obtain the following equation:

εsE2(z)
8π

+ nbkBT
(
1 − e

βαE2(z)
2

)
+ nbαE2(z)e βαE2(z)

2

= 2ckBT (cosh βeψ(z) − 1) , (15)

which was first obtained in the work.26

To obtain the potential profile ψ(z), we should first
solve Eq. (14) as a transcendental equation numerically (for
instance, by Newton’s method) with respect to E = −ψ ′(z)
at different values of ψ. Thus, we obtain the function
E = E(ψ). In order to obtain the potential profile ψ(z), we
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solve numerically the equation ψ ′ = −E(ψ) with use of the
standard boundary condition

− ε(0)ψ ′(0) = 4πσ, (16)

where the local dielectric permittivity of the electrolyte
solution

ε(z) = εs + 4παn(z) (17)

is introduced. The local co-solvent concentration can be
expressed as follows:

n(z) = nbe
βαE2(z)

2

1 + v
(
2c (cosh βeψ(z) − 1) + nb

(
e
βαE2(z)

2 − 1
)) .

(18)

To calculate the differential capacitance C = ∂σ/∂ψ0 as
a function of the surface electrostatic potential ψ0 = ψ(0),
which is usually an experimentally controllable parameter,
we should calculate the surface charge density σ. For this
purpose, we use first integral (14) written for z = 0

1 + *
,
2c (cosh(βeψ0) − 1) + nb

*
,
e
βαE2

0
2 − 1+

-
+
-

× v = e

v
kBT

*.........
,

εsE2
0

8π +
αnbE

2
0e

βαE2
0

2

1+
*...
,

2c(cosh βeψ0−1)+nb
*...
,

e

βαE2
0

2 −1
+///
-

+///
-

v

+/////////
-, (19)

where E0 = E(0), and boundary condition (16) may be
rewritten in the form

σ =
1

4π

*.....
,

εs +
4παnbe

βαE2
0

2

1 + v
(
2c (cosh βeψ0 − 1) + nb

(
e
βαE2

0
2 − 1

)) +/////
-

E0. (20)

Solving the system of coupled nonlinear equations
(19) and (20) numerically with respect to E0 and σ at different
values of ψ0, we obtain the dependence σ = σ(ψ0) that allows
us to obtain the differential capacitance profile C = C(ψ0) (see
Sec. III).

III. NUMERICAL RESULTS AND DISCUSSION

Turning to the numerical calculations, we determine
the following reduced parameters: ñb = nbv , α̃ = α/vεs,
Ẽ = βev1/3E, u = βeψ, z̃ = z/v1/3, and σ̃ = σβev1/3/εs. We
first discuss the behavior of the differential capacitance as
the function of surface potential. The reduced differential
capacitance C̃ = C/v1/3εs can be calculated as

C̃ =
∂σ̃

∂u0
, (21)

where u0 = u(0). The system of coupled equations (19)
and (20) can be rewritten in the dimensionless form as

1 + 2c̃ (cosh u0 − 1) + ñb
*
,
e
α̃Ẽ2

0
2ξ − 1+

-

= e

1
ξ

*..........
,

Ẽ2
0

8π +
α̃ ñbẼ

2
0e

α̃Ẽ2
0

2ξ

1+2c̃(coshu0−1)+ñb
*....
,

e

α̃Ẽ2
0

2ξ −1
+////
-

+//////////
- (22)

and

σ̃ =
1

4π

*......
,

1 +
4πα̃ñbe

α̃Ẽ2
0

2ξ

1 + 2c̃ (cosh u0 − 1) + ñb
*
,
e
α̃Ẽ2

0
2ξ − 1+

-

+//////
-

Ẽ0, (23)

where ξ = lB/v1/3 and lB = e2/εskBT is the Bjerrum length.

FIG. 1. The differential capacitance profiles C̃ = C̃(u0) at the different co-
solvent polarizabilities: (a) α̃ = 0.005, 0.02, 0.04 and (b) α̃ = 0.1, 0.2, 0.3.
The data are shown for c̃ = 1.626×10−3, ñb = 0.5, and ξ = 2.32.
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First integral (14) of the modified Poisson-Boltzmann
equation can be also rewritten in the dimensionless form as
follows:

1 + 2c̃ (cosh u(z̃) − 1) + ñb

(
e
α̃Ẽ2(z̃)

2ξ − 1
)

= e

1
ξ

*........
,

Ẽ2(z̃)
8π +

α̃ ñbẼ
2(z̃)e

α̃Ẽ2(z̃)
2ξ

1+2c̃(coshu(z̃)−1)+ñb
*..
,
e

α̃Ẽ2(z̃)
2ξ −1

+//
-

+////////
-. (24)

We use the following values of the physical parameters:
εs = 80, T = 300 K, c = 0.1 mol/l, and v1/3 = 0.3 nm,
which yield a set of the reduced parameters: c̃ = 1.63 × 10−3,
ξ = 2.32. Fig. 1(a) demonstrates the differential capacitance
profiles C̃ = C̃(u0) for the small co-solvent polarizabilities
and the fixed bulk co-solvent concentration ñb = 0.5. As is
seen, increasing the co-solvent polarizability may generate a
differential capacitance enhancement in the region of surface
potentials less than the “saturation” potential usat (a surface
potential at which the maximum of the differential capacitance
is achieved). However, if the surface potential is in the
region of electric double layer saturation, increase in the
co-solvent polarizability provokes a decrease in the differential
capacitance (see Fig. 1(a)). Oppositely, when the co-solvent
polarizability exceeds some critical value, its increase leads
to a different behavior of the differential capacitance. Namely,
increasing the co-solvent polarizability in this case generates
a significant growth of the differential capacitance in the
wide range of surface potentials (see Fig. 1(b)). In order
to understand these two qualitatively different regimes, let
us consider the behavior of co-solvent concentration on the
electrode ñs = ñ(0) as the function of surface potential u0 at
different co-solvent polarizabilities α̃. Fig. 2 demonstrates the

FIG. 2. The local co-solvent concentration ñs = ñ(0) on the electrode as a
function of the surface potential u0 at the different co-solvent polarizabilities
α̃ = 0.005, 0.04, 0.2 and fixed bulk cosolvent concentration ñb = 0.5. At suf-
ficiently small co-solvent polarizability, the co-solvent molecules are depleted
near the strongly charged electrode. On the contrary, when the co-solvent
polarizability exceeds some threshold value, the adsorption of the co-solvent
molecules on the charged electrode takes place. The data are shown for
c̃ = 1.626×10−3 and ξ = 2.32.

values of ñs as the functions of surface potential at different
co-solvent polarizabilities. As one can see, at sufficiently
small co-solvent polarizability, the cosolvent molecules are
depleted at the electrode. On the contrary, when the co-solvent
polarizability exceeds some threshold value, the co-solvent
molecules create an adsorption layer on the charged electrode.
These two regimes are clearly demonstrated in Fig. 3, where
the co-solvent concentration profiles ñ(z̃) are depicted. Thus,
two different regimes of the differential capacitance behavior
are related to the depletion and adsorption of co-solvent
molecules at the charged electrode.

Figures 4(a) and 4(b) show the differential capacitance
profiles at different values of the dimensionless co-solvent
concentration ñb at the fixed co-solvent polarizability α̃ = 0.3.
As one can see, an increase in the co-solvent concentration
in the bulk solution can shift significantly the maximum of
differential capacitance by two qualitatively different manners.
Namely, at the sufficiently small co-solvent concentration,
its increase leads to a shift of the differential capacitance
maximum to the region of higher surface potentials (see

FIG. 3. The co-solvent concentration profiles ñ = ñ(z̃) for (a) depletion
and (b) adsorption regimes. The data are shown for (a) c̃ = 1.626×10−3,
α̃ = 0.04, ñb = 0.5, and ξ = 2.32 and (b) c̃ = 1.626×10−3, α̃ = 0.2, ñb = 0.5,
and ξ = 2.32.
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FIG. 4. The differential capacitance profiles C̃ = C̃(u0) at different bulk
co-solvent concentrations: (a) ñb = 0,10−4,10−3 and (b) ñb = 0.01,0.05,0.1.
At sufficiently small co-solvent concentration, its increase results in the shift
of saturation potential to the region of higher potentials. When the co-solvent
concentration exceeds some threshold value, the maximum of differential
capacitance shifts to the region of lower potentials. The data are shown for
c̃ = 1.626×10−3, ξ = 2.32, and α̃ = 0.3.

Fig. 4(a)). It means that an additive of the small quantity
of the polarizable co-solvent to the electrolyte solution
prevents the saturation of the electric double layer. In
the case, when the co-solvent concentration exceeds the
threshold value, the maximum of differential capacitance
shifts to the region of lower surface potentials (see Fig. 4(b)).
Figure 5 shows the dependencies of the saturation potential
usat on the co-solvent concentration ñb at different values
of co-solvent polarizability α̃. As it is shown, the non-
monotonic behavior of the saturation potential with varying
co-solvent concentration occurs at sufficiently large co-solvent
polarizability only. However, an additive of the co-solvent
with sufficiently small polarizability leads to the shift of the
saturation potential to lower potentials for all the considered
co-solvent concentrations. It should be noted that non-
monotonic behavior of the saturation potential with increasing
co-solvent concentration can be of interest to electrochemical

FIG. 5. The dependencies of saturation potential usat on the co-solvent
concentration ñb at the different co-solvent polarizabilities α̃ = 0.1, 0.2, 0.3.
The data are shown for c̃ = 1.626×10−3, ñb = 0.5, and ξ = 2.32.

applications, where it is necessary to control the differential
capacitance.

Fig. 6 demonstrates the comparison between the
differential capacitance profiles obtained by the present theory
and our previous theory. As one can see, previous theory is
valid at small surface potentials only. Indeed, accounting for
the excluded volume of both ions and molecules of the co-
solvent results in a decrease in the differential capacitance
in the region of high surface potential compared to the
simplified theory of point particles. The latter means that
the dramatic increase in the differential capacitance at high
surface potentials predicted in work26 is unphysical.

Finally, we discuss the influence of the co-solvent
concentration and co-solvent polarizability on the electrostatic
potential profile u(z̃). As well as in our previous theory,
an increase in the co-solvent polarizability leads to longer-

FIG. 6. Comparison between differential capacitance profiles obtained by
simplified theory and present theory. The simplified theory gives unphysical
dramatic growth of the differential capacitance at the large surface potentials.
The data are shown for c̃ = 1.626×10−3, ñb = 0.5, ξ = 2.32, and α̃ = 0.1.
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FIG. 7. The electrostatic potential profiles u = u(z̃) at the different co-solvent
polarizabilities α̃ = 0.1, 0.5 and fixed co-solvent bulk concentration ñb =

0.5. The potential profiles become more long-ranged at increase of co-solvent
polarizability. The data are shown for c̃ = 1.626×10−3, ξ = 2.32, and u0= 10.

ranged electrostatic potential profiles (Fig. 7). The latter
is due to the fact that an increase in this variable results
in higher local dielectric permittivity that, in turn, leads
to a decrease in the electrode charge screening. However,
an increase in the bulk co-solvent concentration leads to
more complex behavior of the electrostatic potential profile.
Namely, increasing the bulk co-solvent concentration at its
sufficiently small values makes the electrostatic potential
profile longer-ranged. Nevertheless, when the co-solvent
concentration in the bulk exceeds some threshold value,
its further increase leads to a decrease in the electrostatic
potential at all distances from the electrode (Fig. 8). Such
behavior of the electrostatic potential depending on the
bulk co-solvent concentration is different on that predicted
by our previous simplified theory of point particles, where

FIG. 8. The electrostatic potential profiles u = u(z̃) at the different bulk
co-solvent concentrations ñb = 0, 0.1, 0.6 and fixed co-solvent polarizability
α̃ = 0.3. The data are shown for c̃ = 1.626×10−3, ξ = 2.32, and u0= 10.

the potential profile becomes longer-ranged at all co-solvent
concentrations.

IV. CONCLUSION

In this work based on the density functional formalism on
the level of local density approximation, we have developed
a modified Poisson-Boltzmann equation with an explicit
account of the polarizable co-solvent in combination with the
excluded volume of ions and co-solvent molecules. We have
applied the modified Poisson-Boltzmann equation to electric
double layer theory and shown that like in our previous
simplified theory26 (where all particles of the electrolyte
solution were considered as point ones), the present theory
predicts the influence of the co-solvent polarizability on
the differential capacitance. Namely, in the case of small
co-solvent polarizabilities under sufficiently small surface
potentials of electrode, the differential capacitance grows
significantly with increasing of the co-solvent polarizability
as well as bulk co-solvent concentration. Oppositely, when
the surface potential exceeds some threshold value (which
is close to the saturation potential), the growth of the
co-solvent polarizability and bulk co-solvent concentration
results in decrease in the differential capacitance. However,
when the co-solvent polarizability exceeds some threshold
value, its increase generates a considerable growth of the
differential capacitance in the region of the double layer
saturation. We have established that two qualitatively different
regimes of the differential capacitance behavior are caused
by the depletion and adsorption of co-solvent molecules
at the charged electrode. We have also shown that an
additive of the sufficiently strong polarizable co-solvent to
an electrolyte solution can significantly shift the maximum of
differential capacitance by two qualitatively different ways.
Namely, a small additive of co-solvent results in the shift
of differential capacitance maximum to the higher surface
potentials. However, when the bulk co-solvent concentration
exceeds the threshold value, the maximum of differential
capacitance shifts to the lower surface potentials. We have
shown that increase in the co-solvent polarizability results in
longer-ranged electrostatic potential profile. Finally, we have
obtained that at sufficiently small co-solvent concentration
in the bulk, its increase makes the electrostatic potential
profile longer-ranged. Nevertheless, when the co-solvent
concentration in the bulk exceeds some threshold value, its
further increase leads to a decrease in electrostatic potential.

Now we would like to discuss the limitations of the
present theory. It is well known that the lattice gas model
highly underestimates the pressure in the bulk at high number
densities of particles for the off-lattice hard spheres’ system.28

Moreover, the lattice gas model highly overestimates the
differential capacitance obtained by MD computer simulations
in the wide range of surface potential.29 That is why the
lattice gas model cannot be used for quantitative predictions
of both thermodynamic and electrochemical variables but
only for their qualitative evaluations. To get more reliable
quantitative results, one can use more precise Percus-
Yevick or Carnahan-Starling equations of state. However,
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the application of these equations of state will involve
more difficult numerical calculations.19 The next limitation
is related to the fact that the present theory is based on the
local density approximation and fully ignores the nonlocal
packing effects, which have a short-range nature and must
be important for the ions and co-solvent molecules near the
electrode.9,30 However, we believe that such short-ranged
effects could not drastically affect the double layer differential
capacitance that should be determined mostly by the long-
range correlations of particles. On the other hand, the effects of
co-solvent polarizability related to the long-range correlations
of particles31,32 should be qualitatively described on the level
of mean-field approximation. Unfortunately, we cannot give an
a priori estimate within this formalism of the results obtained.
The latter requires calculations based on the nonlocal density
functional theory or computer simulations. In the present
theory, we have considered the solvent as continuous dielectric
medium with fixed dielectric permittivity. In other words, we
have assumed that the solvent dielectric permittivity near the
charged electrode is the same as that in the bulk solution.
However, as is well known, such assumption cannot be
correct for the sufficiently large surface charge density of
the electrode. Indeed, the application of sufficiently large
electric field can lead to significant decrease of the water
dielectric permittivity.33–36 That is why our theory gives highly
overestimated polarizabilities of the co-solvent molecules
α ≃ 200 Å3 (α̃ ≃ 0.1) for which the discussed phenomena
might be realized. We believe that accounting for the effect
of dielectric permittivity renormalization near the charged
electrode might reduce the polarizability to the physically
reasonable values (α ≃ 10 Å3). Nevertheless, we hope that
our self-consistent field theory may be of use for qualitative
evaluations in various electrochemical applications. Finally, it
is worth noting that the present theory makes sense only in the
case when the co-solvent polarizability significantly greater
than the polarizability of solvent. Indeed, only in this case
the consideration of the solvent as continuous medium may
be justified. Evidently, this condition can be satisfied for the
aromatic compounds dissolved in some aqueous electrolyte
solution.

In conclusion, we would like to speculate on the possible
application of our theory to the experimental systems. In our
opinion, it can be applied to the theoretical description of
the aromatic compounds’ solubilization in aqueous micellar
solutions of amphiphilic imidazolium ionic liquids.37
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