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We study the time evolution of Ginibre matrices whose elements undergo Brownian motion. The non-
Hermitian character of the Ginibre ensemble binds the dynamics of eigenvalues to the evolution of
eigenvectors in a nontrivial way, leading to a system of coupled nonlinear equations resembling those for
turbulent systems. We formulate a mathematical framework allowing simultaneous description of the flow
of eigenvalues and eigenvectors, and we unravel a hidden dynamics as a function of a new complex
variable, which in the standard description is treated as a regulator only. We solve the evolution equations
for large matrices and demonstrate that the nonanalytic behavior of the Green’s functions is associated with
a shock wave stemming from a Burgers-like equation describing correlations of eigenvectors. We
conjecture that the hidden dynamics that we observe for the Ginibre ensemble is a general feature of
non-Hermitian random matrix models and is relevant to related physical applications.
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Today, half a century after the pioneering work of
Ginibre [1], random matrices with complex spectra are
no longer only of academic interest. They play a role in
quantum chaotic scattering [2,3], quantum information
processing [4], QCD with finite chemical potential [5],
in financial engineering with lagged correlations [6], and in
the research on neural networks [7], to name just a few
applications. Eigenvalues themselves, however, are not of
sole interest in the case of non-Hermitian random matrix
ensembles. The statistical properties of eigenvectors are
equally significant [8], in particular, in problems concerning
scattering in open chaotic cavities or random lasing
[9–12]. There, the so called Petermann factor [13], a quantity
describing correlations between right and left eigenvectors,
modifies the quantum-limited linewidth of a laser.
On the other hand, the original Dyson’s idea of a

Brownian walk of real eigenvalues [14] interacting with a
two-dimensional Coulombic force still leads to novel
insights. Examples include the study of determinantal
processes [15–17], Loewner diffusion [18], non-Hermitian
deformations [19], or the fluctuations of nonintersecting
interfaces in thermal equilibrium [20]. The concept of
matricial stochastic evolution has been recently exploited
by several authors [21–24]. In particular, it was shown that
the derivatives of the logarithms of characteristic determi-
nants of diffusing GUE (Gaussian unitary ensemble), LUE
(Laguerre unitary ensemble) and CUE (Circular unitary
ensemble) obey Burgers-like nonlinear equations, where
the role of viscosity is played by the inverse of the matrix
size. For infinite dimensions of the matrix, these equations
correspond to the inviscid regime and describe evolution of
the associated resolvents. Because of nonlinearity, they
develop singularities (shock waves), whose positions cor-
respond to the endpoints of the spectra. For matrices of finite

size, the expansion around the shock wave solution of the
initial viscid Burgers equation leads to a universal scaling of
characteristic polynomials (and of the inverse characteristic
polynomials as well), resulting in well-known universal
oscillatory behavior of the Airy, Bessel, or Pearcey type.
This approach has prompted, in particular, new perception of
weak or strong coupling transition in multicolor Yang-Mills
theory [25,26] and of the spontaneous breakdown of chiral
symmetry in Euclidean QCD [27].
In this Letter, we unveil the intertwined evolution of

eigenvalues and eigenvectors of stochastically evolving
non-Hermitian matrices. To this end, we apply Dyson’s
idea to study diffusing matrices for the case of the Ginibre
ensemble (GE). The central object of the Letter is a
generalized averaged characteristic polynomial. Its loga-
rithmic derivatives, which contain the information about
both the eigenvalues and eigenvectors of the evolving
matrix, fulfill a system of Burgers-like partial differential
equations. We solve them to recover the spectral density,
the Petermann factor encoding the correlations of eigen-
vectors and universal microscopic scaling at the edge of the
support of the eigenvalues.
At first glance one would not expect any similarities

between the GUE and the GE, even in the large N (matrix
size) limit. In the case of GUE, spectra are real; end points
of the spectra exhibit square root behavior and the
eigenvectors decouple from the eigenvalues. In the case
of GE, spectra are complex, eigenvalues form a uniform
disc with a vertical cliff at the boundary and the eigen-
vectors are correlated [8] on the support of eigenvalues.
Nonetheless, the Vandermonde determinant is present in
the joint probability distribution of eigenvalues for both
ensembles and this leads to a two-dimensional electrostatic
Dyson’s picture that underlies calculations of the spectral
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distribution in the large N limit. Consequently, the standard
procedure for non-Hermitian ensembles relies on defining
the electrostatic potential

VðzÞ ¼ lim
ϵ→0

lim
N→∞

1

N
hTr ln½jz − Xj2 þ ϵ2�i; ð1Þ

calculating the “electric field” as its gradient G ¼ ∂zV, and
recovering the spectral function from the Gauss law
ρ ¼ ð1=πÞ∂ z̄G ¼ ð1=πÞ∂zz̄V. We use a shorthand notation
defined by jz − Xj2 þ ϵ2 ¼ ðz1N − XÞðz̄1N − X†Þ þ ϵ21N,
where 1N is the N-dimensional identity matrix. ϵ is an
infinitesimal regulator and it is crucial that the limitN → ∞
is taken first. If one took the limits in an opposite order, one
would obtain a trivial result. Moreover, in the case of the
Ginibre ensemble, hdetðz − XÞi ¼ zN . The standard rela-
tion between zeros of the characteristic polynomials and
poles of the Green’s function, known from considerations
of Hermitian ensembles, would therefore be lost.
The idea is to define the following object

Dðz; w; τÞ ¼ hdetðQ −HÞiτ
¼ hdet ðjz − Xj2 þ jwj2Þiτ; ð2Þ

where

Q ¼
�

z −w̄
w z̄

�
; H ¼

�
X 0

0 X†

�
ð3Þ

and to study its evolution in the space of Q, or more
precisely in the complex plane w “perpendicular” to the
basic complex plane z. In other words, the regulator iϵ,
which is usually treated as an infinitesimally small real
variable, is promoted to a genuine complex variable w.
Note that D is effectively a characteristic determinant
expressed in terms of the quaternion variable Q, since
Q ¼ q0 þ iσjqj, where σj are Pauli matrices, so z ¼ q0 þ
iq3 and w ¼ q1 þ iq2. As we shall see, the dynamics of
Dðz; w; τÞ hidden inw captures the evolution of eigenvectors
and eigenvalues of the Ginibre matrix whose elements
undergo Brownian motion. It is worth mentioning that block
matrices such as H and arguments Q naturally appear in
non-Hermitian random matrix models, e.g., in the general-
ized Green’s function technique [28,29], in Hermitization
methods [30–32], in the derivation of the multiplication law
for non-Hermitian random matrices [33], and in the weak
non-Hermitian random ensembles [34].
In our notation, the meaning of the averages h…iτ like

this in (2) is hFðXÞiτ ¼
R
DXPðX; τjX0; 0ÞFðXÞ, where

DX ¼ P
abdxabdyab is a flat measure over the real

and imaginary parts of matrix elements, Xab ¼ xabþ
iyab, and PðX; τjX0; 0Þ is the probability that the matrix
will change from its initial state X0 at τ ¼ 0 to X at time τ.
For a free random walk with independent increments
hδXabiτ ¼ 0 and hδXabδX̄cdiτ ¼ ðδτ=NÞδacδbd, the evolu-
tion of PðX; τjX0; 0Þ is governed by the diffusion equation

∂τPðX; τjX0; 0Þ ¼
1

N
∂XX†PðX; τjX0; 0Þ; ð4Þ

where ∂XX† is the standard 2N2-dimensional Laplacian
∂XX† ¼ P

abð∂2
xab þ ∂2

yabÞ. The announced dynamics of the
Ginibre ensemble is hidden in equation

∂τDðz; w; τÞ ¼ 1

N
∂ww̄Dðz; w; τÞ; ð5Þ

which is central to this Letter. The derivation will be
presented elsewhere, but we shortly sketch below the main
steps. The determinant in (2) can be represented as a
Berezin integral

R
exp ½θTðQ −HÞη�dθdη ¼ detðQ −HÞ,

where θ and η are independent vectors of Grassmann
variables. Both sides of Eq. (4) can be then multiplied by
this integral and integrated over DX. After some manip-
ulations, like changing the order of integration and inte-
grating by parts, one arrives at (5).
It is easy to see thatDðz; w; τÞ depends on w only through

its modulus r ¼ jwj. Moreover, the simplest initial condi-
tion corresponds to X0 ¼ 0 with D0ðz; wÞ ¼ Dðz; w; 0Þ ¼
ðjzj2 þ jwj2ÞN . The general matrix X0 is determined by the
eigenvalues Λ and a set of left-(L) and right-(R) eigenvectors
X0R¼RΛ (L†X0 ¼ ΛL†). By applying a transformation
S ¼ diagðR;LÞ, S−1 ¼ diagðL†; R†Þ, the off-diagonal
blocks depend explicitly on the eigenvectors

det ðS−1ðQ −HÞSÞ ¼ det

�
z − Λ −w̄L†L

wR†R z̄ − Λ†

�
: ð6Þ

This calculation shows that nonzero w indeed encodes full
information of the underlying matrix which turns out to be
valuable in what follows.
We define two convenient functions v ¼ vðz; r; τÞ and

g ¼ gðz; r; τÞ:

v≡ 1

2N
∂r lnD; ð7Þ

g≡ 1

N
∂z lnD; ð8Þ

which will turn out to be closely related to the eigenvector
correlator and the Green’s function known from the standard
treatment of the Ginibre ensemble. These functions are
not independent, since by construction ∂zv ¼ 1

2
∂rg; in

particular, g ¼ 2
R
dr∂zv. The diffusion equation (5) is

mapped via (7), which basically is the inverse Cole-Hopf
transformation [35], onto a Burgers-like equation

∂τv ¼ v∂rvþ
1

N

�
Δr −

1

4r2

�
v; ð9Þ

where Δr ¼ 1
4
ð∂rr þ ð1=rÞ∂rÞ is the radial part of the two-

dimensional Laplacian. This equation is exact for any N.
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The 1=N factor is a viscosity-like parameter. In the inviscid
limit (N → ∞), (9) reduces to

∂τv ¼ v∂rv; ð10Þ
known as the Euler equation and solved by the method of
characteristics. The curves along which the solution is
constant are given by

r ¼ ξ − v0ðξÞτ; ð11Þ
and labeled with ξ. v0 plays the role of velocity of the front
wave. We therefore have

v ¼ v0ðrþ τvÞ: ð12Þ

For the initial condition X0 ¼ 0, corresponding to
v0ðrÞ ¼ r=ðzz̄þ r2Þ, we obtain a cubic algebraic equation
for v. Its solution gives the (radial) dependence of v on
r ¼ jwj ≥ 0. If one takes a cross section of the whole
solution along the real axis, Imw ¼ 0 and Rew ¼ μ, one can
see that the solution consists of two symmetric branches
vðμÞ ¼ vð−μÞ due to the rotational symmetry of the
problem in the complex plane. In other words, the solution
is represented by the pair of Cardano equations:

vðzz̄þ ð�μþ τvÞ2Þ ¼ �μþ τv; ð13Þ

since μ, as opposed to r, may be positive or negative. The
mapping between r and ξ breaks down when, at some
positions μ ¼ �r�, the derivative becomes singular
(dξ=dr� ¼ ∞), as visualized on the left inset at Fig. 1.
The set of singular points defines the caustics (sometimes
called preshocks). Physically, the singularity comes from
the fact that the velocity of the flow is position dependent,
which makes the solution, for a given jzj, nonunique after a

certain time τ. Between the two symmetric caustics (which
actually form a conelike surface when viewed from the
whole w-complex plane) a shock is formed at μ ¼ 0 for
τ ≥ jzj2. Although the shock formation involves the whole
ðw; zÞ space, as depicted in Fig. 1, its dynamics is
remarkably confined to the region of r ¼ jwj → 0, close
to the z plane, which is the basic complex plane in our
considerations. As was already mentioned, in this region r
plays the role of the regulator ϵ in the formula (1). In this
limit the explicit solution of (13) reads

v2 ¼ ðτ − jzj2Þ=τ2 and v ¼ 0; as r → 0: ð14Þ
The quantity v2 has an explicit interpretation [36] in the
large N limit, namely,

v2 ¼ π

N2

�X
i

Aiiδ
2ðz − λiÞ

�
; ð15Þ

where Aij ¼ ðL†LÞijðR†RÞji; i.e., v2 is a correlator between
the biorthogonal sets of left and right eigenvectors intro-
duced before, known in nuclear physics as the Bell-
Steinberger matrix [12] and in the RMT context introduced
in [8]. This correlator is also known from chaotic scattering
theory as the Petermann factor [9]

Kðz; τÞ ¼ N
πρ

v2 ð16Þ

(where ρ is the spectral density calculated later). Off-diagonal
elements of matrix A are used to probe nonorthogonality of
resonances in open quantum systems [3,37]. Figure 2 shows
the time dependence of the Petermann factor for several
values of jzj. The correlator vanishes outside the critical
shock line, where, as we know from the standard approach,
the Green’s function is analytic, and it is nonzero inside it,
where the Green’s function is nonanalytic. The edge of the
shock line lines up with the contour of the eigenvalue
density support. To summarize, the quaternion shock wave
dynamics (14) reproduces the result of [8].
Having an explicit solution for v (7), we can turn to g (8).

Actually, one can show that g also fulfills a Burgers-like
equation exact for any N,

∂τg ¼ v∂rgþ
1

N
Δrg; ð17Þ

which in the inviscid limit reduces to ∂τg ¼ v∂zg or

∂τg ¼ 2v∂zv; ð18Þ
if one uses ∂rg ¼ 2∂zv. We see that we can calculate g by
differentiating v. The initial condition X0 ¼ 0 corresponds
to g0ðrÞ ¼ z̄=ðjzj2 þ r2Þ, in particular, g0ðr ¼ 0Þ ¼ 1=z.
For v ¼ 0 we have ∂τg ¼ 0 so g is constant in time, and
therefore it is equal to g ¼ 1=z everywhere outside the
shock line. Inside the shock line, we employ the second
solution of (14), which via elementary integration leads to

FIG. 1 (color online). The main figure shows, for a given jzj, the
characteristics (straight lines) and caustics (dashed lines). Inside
the later a shock is developed (double vertical line). Left inset
shows the solution of Eq. (13) at (τ ¼ jzj2). Right inset shows the
caustics mapped to the ðr ¼ jwj; zÞ hyperplane at the same moment
of time. The section r ¼ 0 yields the circle jzj2 ¼ τ, bounding the
domain of eigenvalues and eigenvectors correlations for the GE.
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g ¼ z̄=τ þ fðzÞ. Since both solutions have to match on the
line of the shock due to condition (14), the arbitrary
analytic function f has to be equal to zero. Note that for
r ¼ 0, g coincides with the electric field Gðz; z̄Þ in the
standard formulation mentioned earlier, so the average
spectrum of the considered ensemble reads

ρðz; τÞ ¼ 1

πτ
Θðτ − jzj2Þ; ð19Þ

where ΘðxÞ is the Heaviside step function. We see that
complex eigenvalues are uniformly distributed on a grow-
ing disc of radius

ffiffiffi
τ

p
.

Finally, we would like to comment on the solution for
large but finite N, at the vicinity of the shock. Since finite
size implies nonzero viscosity, the dissipative term will
regularize the shock leading to the smoothening of the
sharp cliff of the eigenvalue density at the edge of the disk
(19). Explicit calculations show that this is indeed the case.
The smoothening makes the density at the edge assume a
universal shape given by the complementary error function
[38]. The argument goes as follows. We use the result of
[39], that the spectral density (diagonal part of the kernel)
for the Ginibre ensemble is proportional to the r → 0 limit
of the characteristic determinant D of the type considered
here. The proportionality factor is the normalizationCN and
the Gaussian weight pðzÞ ¼ expð−ðN=τÞjzj2Þ, i.e.,

ρðz; τÞ ¼N→∞
CNpðzÞDðz; r → 0; τÞ; ð20Þ

with CN ¼ ð2=τπÞð1=ðN − 1Þ!ÞðN=τÞN . Then, we may use
the fact that the form of D is exactly known for our initial
conditions, since it represents the solution for the radial
diffusion [27,40,41]

D ¼
Z

∞

0

qe−Nðq2þr2=τÞI0

�
2Nqr
τ

�
ðq2 þ jzj2ÞNdq: ð21Þ

A careful analysis of the saddle points shows that for largeN
the main contribution to the integral comes from quantities
which scale as q ¼ θN−1=4, jzj − ffiffiffi

τ
p ¼ ηN−1=2, and

r ¼ ωN−3=4, for θ, η, and ω of order 1. We postpone the
details for a future publication. Here we note, however, that
this scaling is identical to the critical scaling for the cusp
singularity of the Wishart or chiral random matrices. The
reason for this lies in the functional form of the determinants,
which happens to be identical for the two ensembles. In this
way we establish additionally a somehow unexpected link
between the universal scaling behavior for the Wishart and
Ginibre ensembles. Taking first the large N limit and then
setting ω ¼ 0, we recover from (21) a well-known result for
the universal scaling at the spectral edge of the Ginibre
ensemble

ρðηÞ ≈ 1

2πτ
Erfc

� ffiffiffi
2

τ

r
η

�
: ð22Þ

We conclude this Letter with several remarks. First, it is
inspiring to compare the Burgers-like structures even
between the simplest Hermitian model (GUE) and its
non-Hermitian counterpart, i.e., the Ginibre ensemble. In
the case of GUE, the characteristic determinant DGUEðzÞ
fulfills a complex diffusion equation ∂τDGUE ¼
−ð1=2NÞ∂zzDGUE. The corresponding Burgers equation
resulting from the Cole-Hopf transformation is complex too
and has to be solved with complex characteristics.
Singularities (shock waves) appear at discrete points
(end points of the spectra) in the flow of eigenvalues
[21]. On the contrary, for the GE, singularities are given by
one-dimensional curves appearing in the flow of eigen-
vector correlations. The fact that in the Hermitian case the
viscosity is negative also has far-reaching consequences. In
particular, it is not smoothening the shock, like in the GE
(where we observe the Erfc smearing), but it triggers
violent oscillations, being the source of Airy universality.
Similar universal oscillations originate from negative vis-
cosity in other ensembles. The fact that ensembles as
different as GUE, CUE, LUE, and GE have a similar
underlying mathematical structure of Burgers-like equa-
tions is remarkable and deserves further studies.
Moreover, for clarity we have only considered the

dynamics of the simplest non-Hermitian ensemble. Our
approach works, however, for any initial condition imposed
on the considered process. Additionally, the method can
be used to study other non-Hermitian ensembles (e.g.,
non-Gaussian ones), for which the described coevolution
will also be present. The resulting equations are of course
much more involved in more general scenarios. Our
formalism could also be exploited to expand the area of
application of non-Hermitian random matrix ensembles
within problems of growth [18], charged droplets in the
quantum Hall effect [42], and gauge theory or geometry
relations in string theory [43] beyond the subclass of
complex matrices represented by normal matrices.

FIG. 2 (color online). The figure depicts theoretical (lines) and
numerical (symbols) time dependence of the Petermann factor
(rescaled by 1=N), for different values of jzj. For the latter,
3 × 104, 200 × 200 matrices were used.
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Finally, we would like to emphasize that a consistent
description of non-Hermitian ensembles requires the knowl-
edge of the detailed dynamics not only on the complex z
plane, where eigenvalues live, but also in the “orthogonal” w
plane. In several standard techniques of non-Hermitian
random matrix models this second variable is treated as
an auxiliary parameter, serving as a regulator only. We have
shown that it governs, in the large N limit, the evolution of
the standard correlator of eigenvectors which is furthermore
coupled to the dynamics of the resolvent. Eigenvectors and
eigenvalues evolve therefore simultaneously, and this coevo-
lution is probably a common feature of all, also multipoint
Green’s functions in non-Hermitian random matrix models.
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