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Abstract –When submitted to a constant mechanical load, many materials display power law
creep followed by fluidization. A fundamental understanding of these processes is still far from be-
ing achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic
model that includes thermally activated yielding events and a broad distribution of energy barri-
ers, which may be lowered under the effect of a local deformation. We relate the creep exponent
observed before fluidization to the width of barrier distribution and to the specific form of stress
redistribution following yielding events. We show that Andrade creep is accompanied by local
strain hardening driven by stress redistribution and find that the fluidization time depends expo-
nentially on the applied stress. The simulation results are interpreted in the light of a mean-field
analysis, and should help in rationalizing the creep phenomenology in disordered materials.

Introduction. – Creep is observed in a variety of1

systems including crystalline metals [1], soft crystals [2],2

polymeric, metallic and colloidal glasses [3–7], gels [8, 9],3

and everyday complex fluids [10]. Typically, the strain4

first increases with time following a power law regime of-5

ten described as Andrade creep, with ε(t) ∼ tp and an6

exponent p between 0 and 1. This creep regime is even-7

tually interrupted by fluidization, after an elapsed time8

that decreases with the applied stress. Though the creep9

phenomenology is widespread, to date its understanding10

remains only partial [11, 12], in particular for the under-11

lying physical mechanism at play. Creep in metals is tra-12

ditionally interpreted in terms of depinning and collective13

motion of dislocations [1, 13]. No such framework exists14

for disordered materials.15

While molecular simulations may provide a wealth of16

information on mechanical properties [6, 14], the slow ki-17

netics inherent to creep make it prohibitive to reach flu-18

idization time. Following the pioneering work of Bula-19

tov and Argon [15], mesoscopic models appear as an al-20

ternative to bridge both time and length scales between21

the molecular level and macroscopic, finite elements cal-22

culations [14]. The common idea is to coarse-grain fast23

microscopic motions, and retain only a minimal descrip-24

tion of local plastic rearrangements or shear transforma-25

tion zones (STZs), most importantly the long-range conse-26

quences of a single localized plastic event. Therefore, the 27

essential ingredients include a local yielding probability, 28

and a spatially resolved dynamics for the stress redistribu- 29

tion, often described by an Eshelby form. Whereas elasto- 30

plastic models have now generated a sustained line of re- 31

search [12,16–18], with much scrutiny on the shear steady 32

state, comparatively little attention has been devoted to 33

analyze the creep dynamics. Two noticeable exceptions 34

are a spatially resolved Soft Glassy Rheology model [19] 35

and a recent study by Bouttes and Vandembroucq [20], 36

which, however, is restricted to logarithmic creep only. 37

The purpose of this letter is to propose an interpretation 38

of creep on the basis of a mesoscopic model. We focus on 39

the situation where i) thermally-activated yielding events 40

play the leading role, ii) disorder induces a wide distri- 41

bution of activation barriers, iii) there is no yield-stress. 42

Using numerical simulations and a mean-field analysis, we 43

investigate how the creep exponent is related to the barrier 44

distribution and examine the influence of the stress redis- 45

tribution on the creep dynamics. Interestingly, our model 46

reveals local strain hardening during the creep regime: lo- 47

cal stress may accumulate in some regions, while in others, 48

it decreases with the global shear rate. Such strain hard- 49

ening phenomenon, which differs from that seen in metals, 50

eventually triggers the fluidization and allows to propose 51

a simple law for the fluidization time. 52
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Model. – Our mesoscopic description relies on three53

main ingredients: a distribution of yielding barriers, pos-54

sibly modified by mechanical effect, thermal activation,55

and stress redistribution. The system is divided into a56

collection of representative elements whose dimension cor-57

responds to the size of a plastic event, and whose state is58

specified by an intrinsic energy barrier E and a local me-59

chanical stress σ, assumed to be a scalar for simplicity. In60

a way similar to Eyring’s model, thermal activation can61

trigger yielding with a rate62

λ(E, σ) = τ−1m exp

[
−E − h(σ)

kBT

]
. (1)

Here, τm is a microscopic time, kB is the Boltzmann con-63

stant and T is the temperature. The function h(σ) spec-64

ifies how the barrier may be lowered by the local stress;65

we will mainly consider a quadratic mechanical activation66

term h(σ) = σ2va/(4µkBT ), where va is an activation vol-67

ume, µ the infinite frequency shear modulus [21]. After68

yielding, an element has his intrinsic barrier renewed from69

a distribution ρE(E), its local stress put to zero, and the70

stress it carried is redistributed to other elements.71

Three types of stress redistribution are possible: “Es-72

helby”, “mean-field” and “short-range”. The first propa-73

gator, which originates in the Eshelby problem of an in-74

clusion in an elastic matrix, is quadrupolar [16,22]75

Gij =
2

πr2ij
cos(4θij) (2)

where Gij is the contribution received by site i from a76

site j, rij = |rij | is the distance between the two sites,77

and cos θij = (rij · ex)/rij , with ex a unit vector along78

the direction of shear. The mean-field propagator com-79

pletely neglects spatial dependence and assign to all ele-80

ments an identical contribution Gij = 1/(N −1), N being81

the total number of sites. To further assess the influence82

of the redistribution type, we will also consider a short-83

range propagator [23], for which the stress carried by an84

element is redistributed only to its nearest neighbours, as85

described in Ref. [24]. Note that only the Eshelby prop-86

agator is physically sound, the others are considered for87

comparison purpose.88

To fully specify the model, it remains to choose the89

probability density of intrinsic barrier energy ρE(E). In90

the following, we will concentrate mostly on a Gaussian91

distribution with mean Ē and variance ∆2,92

ρE(E) =
1√

2π∆2
exp

[
− (E − Ē)2

2∆2

]
. (3)

Such a Gaussian form is often assumed in modelling the93

plastic behaviour of polymer glasses [25], or more generally94

molecular glasses [26, 27]. Furthermore, it has long been95

recognized to be associated with a stretched exponential96

relaxation functions [27, 28]. For the sake of analytical97

tractability, we will also consider a barrier distribution98
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Fig. 1: Creep compliance in simulations. The stress redistribu-
tion is of Eshelby type, and the distribution of energy barrier
is Gaussian with ∆ = 3. Different values of applied stress σo

are shown.

which is exponential and has a width α−1,99

ρE(E) = α exp [−α(E − Eo)]H[E − Eo], (4)

where Eo denotes the minimal energy barrier and H is100

the Heaviside distribution. The model is close to that101

of Ref. [20], but the distribution of energy barriers has a 102

width which is finite rather than infinite, hence logarith- 103

mic creep is never observed. 104

Simulations. – To solve the model numerically, 105

we discretize space with a two-dimensional square lat- 106

tice and periodic boundary conditions. Initially, each 107

site i carries the same stress σ0, and is assigned an 108

energy barrier Ei sampled from the steady distribution 109

ρE(Ei) exp(Ei/kBT ). The creep process is simulated us- 110

ing a Kinetic Monte Carlo (KMC) algorithm [29]. Given 111

the yielding rates specified by Eq. (1) for all sites, each 112

iteration selects a site i to yield, and generates a corre- 113

sponding time increment. Upon yielding, the local stresses 114

and the total strain are updated as follows, 115

σi → 0, σj → σj +Gijσ
−
i for j 6= i, ε→ ε+ σ−i /2µ, (5)

where σ−i is the stress carried by the site i prior to yield- 116

ing. A new energy barrier is then chosen from the prob- 117

ability density ρE . We use a pseudo-spectral method to 118

carry out the elastic redistribution [16], and impose the 119

sum rule ∀i,
∑
j 6=iGij = 1, so that the spatially averaged 120

stress 1
N

∑
i σi = σ0 remains constant at all time, as re- 121

quired by the creep set-up. We have simulated systems 122

with typical linear size 64 and 256, and verified that the 123

results are not size dependent. In data presented below, 124

we take kBT as energy unit, express stress in units where 125

the shear modulus is µ = 1, and choose the time unit 126

as τm exp(Ē) or τm exp(Eo) in the Gaussian and exponen- 127

tial case respectively. Finally, the activation parameter is 128
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set to va = 1. Once this choice is made, the only remain- 129

ing parameter of the model is the distribution width ∆ 130

or α−1. If not indicated otherwise, the stress redistribu- 131

tion is of Eshelby form, and ρE is Gaussian.132

Figure 1 summarizes the creep phenomenology of our133

model. Whatever the applied stresses σo, three regimes134

may be distinguished in the compliance curve J(t) =135

ε(t)/σo. At early times, the compliance increases alge-136

braically with time J(t) ∼ tp, where the creep exponent p137

is found to be almost independent of σo. This first regime138

terminates with a sharp increase in deformation, at a flu-139

idization time tf that decreases with the applied stress σo.140

The system eventually settles into steady flow, where the141

strain increases linearly with time, J(t) ∼ t. Below we142

investigate in turn the primary creep and fluidization. To143

do so, we now develop a mean-field theory.144

Mean-field analysis. – When spatial dependence is
entirely discarded, the system is completely described by
the probability density P (E, σ, t) to find at time t an ele-
ment with energy barrier E and subject to a stress σ. Our
starting point is the evolution equation

∂tP = −λ(E, σ)P + Y (t)ρE(E)δ(σ)− S(t)∂σP, (6)

where Y (t) = 〈λ(E, σ)〉P , S(t) = 〈σλ(E, σ)〉P and 〈.〉P145

denotes an average over the full distribution P (E, σ, t).146

In the RHS of Eq. (6), the first term originates from ele-147

ments in state (E, σ) that yield with a rate λ(E, σ). Y (t)148

is the average yielding rate, also called material’s fluid-149

ity [19]. Elements that have yielded arrive in a renewed150

state with zero stress and an energy barrier randomly cho-151

sen in the distribution ρE(E). The average rate of released152

stress S(t) gathers the contributions from all yielding ele-153

ments, which is redistributed equally throughout the sys-154

tem, resulting in a drift term in σ with velocity S(t).155

One can check that the evolution equation implies two156

conserved quantities: the total probability and the total157

stress. While Eq. (6) may be written directly, a derivation158

is possible starting from a Boltzmann equation involving159

a stress collision operator.160

The model defined here is related to but distinct from161

the Soft Glassy Rheology (SGR) model [30]. With162

quadratic activation function h(σ) ∼ σ2 and an expo-163

nential ρE(E), the model is formally equivalent to SGR164

with noise temperature x = α. However, the interpreta-165

tion is completely different, since as in the original trap166

model [28], T here is really the temperature, not an effec-167

tive noise resulting from yielding events elsewhere in the168

material. It was pointed out that the mechanical noise in169

SGR should be “determined self-consistently by the inter-170

actions in the system” [31]. This key point is captured171

by the redistribution term S(t)∂σ, and is crucial for the172

creep situation, a transient regime. In contrast to steady173

shear where the noise temperature is constant, the activity174

here is time-dependent, as it slowly declines during creep.175

Our description is also reminiscent of fiber bundles model176

(FBM) but differs in an essential way [32,33]. In contrast177

to fibers that permanently disappear once ruptured, ele- 178

ments that have yielded are renewed and will again carry 179

a stress. The mean-field analysis is used in the following 180

to provide a qualitative understanding ; to a large extent, 181

it proves sufficient to rationalize what occurs in more re- 182

alistic cases. 183

Creep regime. – We first consider the mean-field 184

model and seek the total strain ε(t) =
∫ t
0
S(t)/2µ that fol- 185

lows a stress step. The model can be solved if we neglect 186

non-linear effects by setting h(σ) = 0. In that case, the 187

yielding of an element depends only on the time elapsed 188

since its latest renewal and Y (t) can be computed with- 189

out any reference to the local stress. The distribution of 190

barriers is in a steady state characterized by 191

Pst(τ) =
τρ(τ)

〈τ〉
, Yst =

1

〈τ〉
, (7)

where, from now on, we use the intrinsic yielding time 192

τ = eE rather than the energy barrier, and 〈.〉 denotes an 193

average over the corresponding distribution ρ(τ). The ini- 194

tial condition involves a uniform load on all elements and 195

an equilibrated distribution of barriers, namely P (τ, σ, t = 196

0) = Pst(τ)δ(σ − σo). We do not consider aging effects. 197

To solve the model, let us introduce σ(τ, t) = 198∫
dσσP (τ, σ, t) which satisfies 199

∂t σ = −σ
τ

+ S(t)Pst(τ), S(t) =

∫
dτ

τ
σ(τ, t). (8)

Using the condition
∫

dτ σ(τ, t) = σo that holds at all 200

time, and working with Laplace transforms, one obtains 201

the exact solution, valid for any distribution of barriers, 202

S(s)

σo
=

1

sR(s)
− 1, R(s) =

∫
dτ

Pst(τ)

s+ τ−1
, (9)

where s is the Laplace variable and indicates the nature 203

of the function. Note that Eq. (9) can be rewritten as 204

J(s)G(s) = 1/s2, where J(s) = ε(s)/σo is the compliance, 205

and G(s) = µR(s) is the relaxation modulus [34]. The ex- 206

plicit expression G(t) = µ
∫∞
0
Pst(τ)e−t/τdτ has a simple 207

interpretation. The integral is the average fraction of el- 208

ements that have never yielded at time t, suggesting that 209

sites that have already yielded at least once do not play 210

any role, as if disappearing in FBM-like models. This in- 211

terpretation is surprising at first sight but understandable 212

with the analysis of local stress presented below. 213

Though R(s) can be obtained in closed form for some 214

barrier distributions, taking the inverse Laplace transform 215

of 1/R(s) proves impossible. Accordingly, we resort to a 216

small-s expansion and relying on Tauberian theorems [35], 217

we extract the asymptotic behavior of S(t). For the sake 218

of tractability, we consider an exponential distribution of 219

barrier as defined in Eq. (4), which translates into a power 220

law distribution of yielding time ρ(τ) = αταo /τ
α+1H[τ − 221

τo], with τo the minimum value. Assuming α > 1, R(s) 222

can be expressed in terms of hypergeometric function as 223
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Fig. 2: Creep regime and exponent. (Bottom) Strain
curves with Eshelby redistribution and Gaussian ρE of vari-
ous widths ∆. The applied stress is σo = 0.01. (Top) Creep
exponent, as defined in the text, for three types of stress prop-
agators, and for Gaussian and exponential ρE (left and right
respectively). In the latter, the line is the mean-field predic-
tion. Symbol size is indicative of error bars.

sR(s) = 2F1 (1,−1 + α, α,−1/τos). Several cases arise 224

for the asymptotic behavior. If α > 2, then the long- 225

time behavior is Newtonian with S(t) ∼ 〈τ〉/〈τ2〉, a result 226

that holds more generally for any distribution ρ(τ) whose 227

variance 〈τ2〉 is finite. In the marginal case α = 2, one gets 228

S(t) ∼ 1/ ln(t/τo). More importantly, when 1 < α < 2, 229

S(t) ∼ tα−2, implying that the creep exponent is p = α−1. 230

Though the starting point given by Eq. (6) is different,231

those conclusions are in agreement with Ref. [30]. We do232

not consider the case α < 1, as we assume that the mean233

yielding 〈τ〉 is finite so that an equilibrated state exists.234

In the limit α→ 1+, the behavior approaches logarithmic235

creep, since 〈τ〉 grows without bound and there are no236

more time scale in the system.237

While those conclusions have been reached for an ex-238

ponential ρE(E), corresponding to a power law ρ(τ), they239

are informative of other situations. First, if yielding times240

are bounded by a maximal value τmax, the long-time be-241

havior is ultimately Newtonian but up to t ' τmax, we242

expect a transient regime similar to the asymptotic behav-243

ior described above. Second, as soon as the distribution244

of energy is not narrowly peaked, there are widely differ-245

ent yielding times, and we expect that the creep exponent246

directly reflects the width of energy distribution.247

With the mean-field prediction in hand, we now exam-248

ine how the creep properties is affected by the type of249

stress redistribution and the choice of energy barrier. As250

a quantitative measure, we focus on the exponent char-251

acterizing the primary creep regime. In practice, a linear252

fit to ε(t) in bilogarithmic scale was used to get at all253
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Fig. 3: Analysis of local stress during creep. The main graph
shows how the mean stress σm(τ, t) carried by sites with yield-
ing time τ evolves in time. A plateau is seen at large τ . (Inset)
Plateau value σpl, indicating the mean stress carried by “slow”
elements, as a function of strain. The dashed and solid lines
have slope unity. The simulation involves Eshelby redistribu-
tion, Gaussian ρE with ∆ = 3 and σo = 0.01.

time an “effective exponent”, the minimum of which is254

the creep exponent reported in Fig. 2. If ρE is exponen-255

tial, the asymptotic behavior is ε(t) ∼ tp, and the mini-256

mum is attained in a plateau at the longest time. If ρE257

is Gaussian, or bounded, then ε(t) = ctp + t/η [36], with258

c a constant and η the viscosity1. The effective exponent259

exhibits a minimum near the crossover between the two260

regimes, which, to be seen, may require very long simu-261

lations, reaching up to 109 KMC iterations. As shown in262

Fig. 2 (top right), the simulation data for the exponen-263

tial ρE is in full agreement with the mean-field prediction264

p = α− 1. Should we expect a similar result with Eshelby265

and short-range redistributions? On the one hand, given266

the long-range nature of elastic propagator, the mean-field267

theory could be expected to be exact [37]. On the other268

hand, it was argued that the stress resulting from spa-269

tially distributed events is “dominated by local contribu-270

tions” [16,38]. Surprisingly, we find that within numerical271

accuracy, the mean-field and short-range exponents coin-272

cide, whereas the Eshelby case yields consistently higher273

values. In the Gaussian case, no pronounced difference is274

seen in the exponents. Overall, we see that the wider the275

barrier distribution, the slower the creep, but the value of276

creep exponent is sensitive to both the specific distribution277

of barriers and the form of the stress propagator.278

Local stress. – To get further insight in the meso-279

scopic dynamics during the creep regime, we have con-280

ducted an analysis of the local stress carried by elements.281

Of particular attention is the relation between the local 282

stress σi carried by an element i, and its instantaneous 283

yielding time τi. Figure 3 reveals a strongly heteroge- 284

1Here the applied stress is so small that fluidization does not
occur.
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neous dynamics during primary creep. Indeed, “fast” ele- 285

ments having a low energy barrier carry on average a small 286

amount of stress σi � σo, while “slow” elements support 287

most of the stress. Noticeably, the level of stress borne 288

by these elements increases with time. As shown in the 289

inset of Fig. 3, this increase is approximately proportional 290

to the local strain ε(t). Such strain hardening, here un- 291

derstood as an increase in local stress required to produce 292

additional strain, may be simply explained in the frame- 293

work of the mean-field analysis presented above. Using 294

Eqs. (8)-(9), one gets for σm(τ, t), the mean stress carried 295

at time t by elements with yield time τ , 296

σm(τ, s) =
σ(τ, s)

Pst(τ)
=
σo + S(s)

s+ τ−1
. (10)

and obtain in the two limits,

τ � t, σm(τ, t) = 2µτ ε̇(t), (11a)

τ � t, σm(τ, t) = 2µε(t) + σo. (11b)

Schematically, one can identify two populations of sites, 297

respectively fast and slow depending on the value of the 298

local yielding time τ as compared to the elapsed time t. 299

On the one hand, the sites that have yielded already and 300

that are carrying a stress decreasing in time as ε̇(t). On the 301

other hand, the resistant sites that have not yielded yet, 302

and who carry a stress increasing as ε(t). In Fig. 3, one sees 303

that Eqs. (11a) and (11b) apply to a good approximation, 304

even though the propagator is of Eshelby type rather than 305

mean-field. 306

To conclude on the local stress, we note that the strain 307

hardening behavior reported here is distinct from the ex- 308

haustion of low energy barriers discussed in the context of 309

elasto-plastic models [39,40]. In the latter, strain harden-310

ing originates in the distribution of the local yield stresses311

shifting with time, as a result of the progressive exhaustion312

of the weakest sites. In the present case, the distribution313

of intrinsic barrier is stationary and there is no bias in the314

renewal of weak sites. Instead, the strain hardening be-315

havior derives from stress accumulation on the strongest316

sites.317

Fluidization time. – At the fluidization transition,318

the deformation increases sharply, and we have observed319

strain localization, as already noticed in Ref. [19]. In par-320

ticular, the standard deviation of the local strain goes321

through a maximum, which is used to pinpoint the flu-322

idization time tf . Figure 4 reveals an exponential depen-323

dence of the fluidization time on the applied stress.324

To rationalize this behavior, we make use of two obser-325

vations. First, the strain at fluidization εf = ε(tf) varies326

only weakly with σo, namely εf(σo) ≈ ε̃f − ζσo, as pre-327

viously observed in some experiments [2, 10]. Second, the328

particular form of h(σ) does not appear to have the leading329

role in the tf(σo) relation since we also found an exponen-330

tial dependence when h(σ) is linear rather than quadratic.331

Consider the plateau in σ associated to slow sites, which332
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at a time t, ranges from t to τmax, the largest relaxation333

time in the system. We reintroduce the effect of activa-334

tion in an approximate manner, with σ(t) estimated from335

the solution with no activation term (h = 0) found above, 336

thus leading to a shift factor exp [−h(σm(τ, t))] for an el- 337

ement with intrinsic time τ . Now, we postulate that the 338

fluidization occurs where there is no more element whose 339

actual relaxation time is longer than the elapsed time, 340

tf = τmax exp [−h(σo + 2µεf)] , (12)

that is, activation effects have shifted the longest intrinsic 341

relaxation time to a value equal to tf . Assuming εf is 342

strictly independent of σo, and expanding at first order in 343

σo � 2µεf , one gets 344

tf = C exp [−σo/σ̃] , (13)

with C = τmax exp [−h(2µεf)] and σ̃ = 1/h′(2µεf). A simi- 345

lar argument applies if εf(σo) exhibits a linear dependence 346

as considered above. As regards the dependence in the 347

width ∆ of barrier distribution, we note that the prefac- 348

tor C may change significantly, as τmax increases with ∆. 349

In experiments, alongside power law dependence for car- 350

bopol gels [41, 42], an exponential tf(σo) was reported in 351

carbon black gels [8, 9], thermo-reversible silica gels [43] 352

and protein gels [44]. Within our mesoscopic model, this 353

phenomenology can be attributed to activated dynamics 354

with energy barriers that are lowered by the applied stress. 355

Before concluding, we briefly comment on the steady 356

state reached after fluidization, that is characterized by a 357

constant shear rate γ̇, as observed in colloidal glasses [5]. 358

Simulations show that the final state attained during 359

steady creep is identical to that reached upon constant 360

deformation rate γ̇. For exponential barrier distribution, 361

the flow curve indicates a power law fluid σ ∼ γ̇α, in agree- 362
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ment with a mean-field analysis. In the Gaussian case, one 363

finds a logarithmic behavior σ ∼ ln(γ̇). 364

Conclusion. – Through the consideration of a meso- 365

scopic viscoplastic model, we demonstrated that the creep 366

dynamics is directly related to distribution of energy barri- 367

ers, and to the form of the stress redistribution subsequent 368

to yielding. Moreover, our simulations show that primary 369

creep regime is accompanied by local strain hardening, re- 370

sulting from the existence of a broad distribution of yield- 371

ing times. Strain hardening is also key to understand the 372

fluidization process, which here displays an exponential 373

dependence on the applied stress, as seen in experiments 374

on colloidal gels. We believe our model may be relevant 375

for polymeric, metallic or colloidal glasses, in the vicinity 376

of their glass transition temperature or volume fraction. 377

Indeed, the steady state flow in this regime is power law 378

in the case of metallic glasses [3, 45], or logarithmic for 379

polymer glasses [46]. Creep and fluidization are also ob- 380

served in systems such as carbopol gels [41,42], which have 381

a yield stress. It remains to address this important class 382

of materials. 383
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