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Abstract – In this paper within a field-theoretical approach taking into account explicitly a co-
solvent with a nonzero dipole and a polarizability tensor, we derive a modified Poisson-Boltzmann
equation. Applying the modified Poisson-Boltzmann equation, we formulate a generalized Gouy-
Chapman theory for the case when an electrolyte solution is mixed with a polar co-solvent having
a large polarizability. We show that an increase of the co-solvent concentration as well as the
co-solvent polarizability lead to a significant increase of differential capacitance at sufficiently
high surface potentials of the electrode, whereas the profile of the electrostatic potential becomes
considerably more long-ranged. On the contrary, an increase in the permanent dipole of the
co-solvent only weakly affects the differential capacitance.

Copyright c© EPLA, 2015

Introduction. – Up to now the Poisson-Boltzmann
(PB) equation remains the simplest and the most effective
theoretical tool for describing the distribution of charged
particles near charged surfaces in biophysics, colloid chem-
istry, electrochemisrty, etc. However, the PB equation con-
tains many assumptions that make it inapplicable to real
physical systems. The mean-field nature of the PB equa-
tion does not allow us to take into account the effects of
the ionic correlations, whereas the consideration of the sol-
vent as a continuous dielectric medium makes it impossi-
ble to study the effects of the solvent molecular structure.
These two factors motivated the researchers to find new
approaches the PB equation modifications during the last
two decades [1–3].

Nowadays, great effort has been made to modify the
PB equation with respect to ionic correlations [4–8], the
dipole structure of the solvent [9–12], polarizability and
permanent dipole of ions [13–16] as well as their excluded
volume [17–21], and finally the solvent quadrupolarizabil-
ity [22]. These modifications sufficiently improved the

(a)E-mail: urabudkov@rambler.ru

(b)E-mail: bancocker@mail.ru

theory of electrolytes that enabled calculations of the
physico-chemical characteristics of real solutions, such as
dielectric permittivity and activity coefficients [11,22].

Nevertheless, despite the evident success in extending
the pure PB-paradigm there is still no answer to the ques-
tion on whether or not it is possible to incorporate to the
PB equation the effects of the solvent polarizability in the
electric field of the ions and external charges.

Schroder and Steinhause presented [23] a research on
the influence of cation polarizability on the structure and
dynamics of an ionic liquid within Molecular Dynamics
(MD) simulations. It is shown that when the cation po-
larizability increases, the structure of ionic liquid remains
almost unchanged. On the contrary, the rotational and
translational diffusion sufficiently increase. Recently, us-
ing MD simulations for the set of ionic liquids was shown
that cation polarizability has a significant effect on a shape
of the lines of a vibration density of states [24]. These ob-
servations indicate that polarizability significantly affects
the characteristics that are mainly determined through
the long-range correlations of the solution particles. The
differential capacitance of an electric double layer is one
of the physical values that is mainly determined by the
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long-range correlations. Thus, to correctly evaluate the
differential capacitance and the electrostatic potential at
long distances from the charged electrode, it should be
important to incorporate the polarizability effect of the
solvent and the electrolyte ions. Moreover, simultaneous
incorporation of the polarizability effects of the solvent
and ions into the PB equation is especially important for
electrochemical applications, where one of the main prob-
lems is the search factors that can significantly increase a
magnitude of the differential capacitance.

In particular, two questions should be answered:

– How much the differential capacitance will change
when the polarizability of the solvent is taken into
account?

– What is the difference between the effects of inclusion
of a permanent dipole and the polarizability of the
solvent on the differential capacitance?

Addressing these two questions, we derive within the
field-theoretical approach a modified PB equation taking
into account explicitly a co-solvent with a nonzero perma-
nent dipole and a polarizability tensor. Using this modified
PB equation, we formulate a generalized Gouy-Chapman
theory [25,26] for the case when the electrolyte solution
is mixed with a polar co-solvent having a strong polariz-
ability. We calculate the differential capacitance and the
electrostatic potential profile near the charged electrode at
different co-solvent concentrations. We show that adding
a strong polarizable co-solvent to the electrolyte solution
leads to a significant increase of the differential capaci-
tance under sufficiently large surface potentials of the elec-
trode and to a more long-ranged electrostatic potential
profile. We obtain that with the increase of the co-solvent
polarizability, the differential capacitance dramatically in-
creases. On the contrary, the permanent dipole of the
co-solvent has only a weak effect on the value of the
differential capacitance.

Theory. – We consider an electrolyte solution contain-
ing N+ point ions carrying a charge z+e (z+ > 0), N− ions
carrying a charge z−e (z− < 0), and a solvent which we
shall model as a continuous dielectric medium with di-
electric permittivity εs. In addition, we also consider Nc

molecules of a co-solvent which has a permanent dipole
p and a polarizability tensor α̂. Moreover, we assume that
the positively charged ions (cations) have also a polariz-
ability tensor α̂+. The latter assumption covers the case
when the electrolyte is an ionic liquid. The discussed sys-
tem is confined to a volume V and has a temperature T .
Since in this work we shall discuss the effects of polarizabil-
ity and permanent dipole only, for the sake of simplicity
we neglect the excluded volume of the ions as well as the
co-solvent molecules. The variants of models in which the
excluded volume of the ions has been taken into account
have been developed in recent works [17–21].

A canonical partition function of the above-mentioned
system can be written in the following form:

Z =

∫

dΓc

∫

dΓie
−βH , (1)

where the following notations for the integrating measures
have been introduced

∫

dΓi(..) =
Λ
−3N+

+ Λ
−3N−

−

N+!N−!

∫

V

N+
∏

k=1

dr+
k dP+

k

∫

V

N−
∏

l=1

dr−l (..)

(2)

and

∫

dΓc(..) =
Λ−3Nc

c

Nc!

∫ Nc
∏

k=1

dpkdPk

∫

V

Nc
∏

k=1

drc
k(..). (3)

The Hamiltionian of the system can be written as

H =
1

2

Nc
∑

k=1

Pkα̂−1Pk +
1

2

N+
∑

l=1

P+
l α̂−1

+ P+
l

+
1

2

∫

V

dr

∫

V

dr′ρ̂(r)Vc(r − r′)ρ̂(r′), (4)

where Pk and P+
l are fluctuating dipoles of k-th molecule

of the co-solvent and l-th cation, respectively; α̂ and α̂+

are the polarizability tensors of the co-solvent molecules
and the cations, respectively. Moreover, a local charge
density ρ̂(r) of the system has been introduced:

ρ̂(r) = z+e

N+
∑

k=1

δ(r − r+
k ) + z−e

N−
∑

k=1

δ(r − r−k )

−
Nc
∑

k=1

(pk + Pk)∇δ(r−rc
k) −

N+
∑

k=1

P+
k ∇δ(r−r+

k ) + ρext(r),

(5)

where pk is the permanent dipole of the k-th co-solvent
molecule; ρext(r) is the density of an external charge;
Vc(r−r′) = 1

εs|r−r
′| is the Coulomb potential. It should be

noted that in (4) for the sake of simplicity the electrostatic
self-energy has been omitted.

Using the standard Hubbard-Stratonovich transforma-
tion, after a calculation of the Gaussian integrals over the
variables Pj and P+

j and an integration over the orienta-
tions of the dipoles pk, we arrive at

Z = Zid,iZid,c

∫ Dϕ

C0
e
− εs

8πβ

R

V

dr(∇ϕ(r))2+i
R

V

drρext(r)ϕ(r)

×Q
N+

+ [ϕ]Q
N−

− [ϕ]QNc
c [ϕ], (6)

where C0 =
∫

Dϕe
− εs

8πβ

R

V

dr(∇ϕ(r))2

is the normalization
constant; β = 1/kBT ;

Zid,i =
Λ
−3N+

+ Λ
−3N−

− V N++N−

N+!N−!
(2πkBT det α̂+)N+/2 (7)
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is the ideal partition function of the ions,

Zid,c =
Λ−3Nc

c V Nc

Nc!
(2πkBT det α̂)Nc/2 (8)

is the ideal partition function of the co-solvent molecules;
Λ± and Λc are the thermal de Broglie wavelengths of the
ions and the co-solvent molecules, respectively. The single-
particle partition functions of the ions and the co-solvent
molecules that are immersed into an auxiliary fluctuating
electric field with potential iϕ(r) take the following forms:

Q+[ϕ] =

∫

V

dr

V
eiz+eϕ(r)−

kBT

2 ∇ϕ(r)α̂+∇ϕ(r), (9)

Q−[ϕ] =

∫

V

dr

V
eiz−eϕ(r), (10)

Qc[ϕ] =

∫

V

dr

V
e−

kBT

2 ∇ϕ(r)α̂∇ϕ(r) sin p|∇ϕ(r)|
p|∇ϕ(r)| . (11)

In the thermodynamic limit (N± → ∞), we have the
following asymptotic relations [27]:

Q
N−

− [ϕ] =

⎡

⎣1 +

∫

V

dr

V
(eiz−eϕ(r) − 1)

⎤

⎦

N−

≃ e
ρ−

R

V

dr(eiz−eϕ(r)−1)

, (12)

Q
N+

+ [ϕ] ≃ e
ρ+

R

V

dr
(

eiz+eϕ(r)−
kBT

2
∇ϕ(r)α̂+∇ϕ(r)−1

)

, (13)

where ρ± = N±/V are average concentrations of the ions
in the bulk solution.

Analogously, in the thermodynamic limit (Nc → ∞) we
can obtain

QNc
c [ϕ] ≃ e

ρc

R

V

dr
(

e−
kBT

2
∇ϕ(r)α̂∇ϕ(r) sin p|∇ϕ(r)|

p|∇ϕ(r)|
−1

)

. (14)

Thus, the excess partition function of the system takes the
form

Zex =
Z

Zid,iZid,c
=

∫ Dϕ

C0
e−S[ϕ], (15)

where the following short-hand notation for the integrand
has been introduced:

S[ϕ] =
εs

8πβ

∫

V

dr(∇ϕ(r))2 − i

∫

V

drρext(r)ϕ(r) − WI [ϕ],

(16)
where a “functional of interaction” WI [ϕ] has been also
introduced,

WI [ϕ] = ρc

∫

V

dr

(

e−
kBT

2 ∇ϕ(r)α̂∇ϕ(r) sin p|∇ϕ(r)|
p|∇ϕ(r)| − 1

)

+ ρ+

∫

V

dr
(

eiz+eϕ(r)−
kBT

2 ∇ϕ(r)α̂+∇ϕ(r) − 1
)

+ ρ−

∫

V

dr
(

eiz−eϕ(r) − 1
)

. (17)

Then, we calculate the functional integral (15) within a
standard saddle-point approximation [2]. An equation for
the saddle point has the form

δS[ϕ]

δϕ(r)
= 0. (18)

Calculating the variational derivative in (18) and intro-
ducing a notation for an electrostatic potential ψ(r) =
−ikBTϕ(r), one can obtain the following equation:

∇(ε̂(r)∇ψ(r)) = −4πρext(r) − 4πz−eρ−e
−

z−eψ(r)

kBT

− 4πz+eρ+e
−

z+eψ(r)

kBT
+

∇ψ(r)α̂+∇ψ(r)

2kBT , (19)

where a tensor of the local dielectric permittivity has been
introduced,

ε̂(r) = εsI + 4πρce
∇ψ(r)α̂∇ψ(r)

2kBT
sinhβp|∇ψ(r)|

βp|∇ψ(r)|

×
(

α̂ + I
p2

kBT

L(βp|∇ψ(r)|)
βp|∇ψ(r)|

)

+ 4πρ+α̂+e
−

z+eψ(r)

kBT
+

∇ψ(r)α̂+∇ψ(r)

2kBT , (20)

where L(x) = coth x − 1/x is a Langevin function. The
tensor of dielectric permittivity in the bulk solution (where
ψ = 0) is determined by the following expression:

ε̂ = εsI + 4πρc

(

α̂ + I
p2

3kBT

)

+ 4πρ+α̂+, (21)

where I is the identity tensor; ρc = Nc/V is a bulk
co-solvent concentration.

The eqs. (19), (20) determine the electrostatic potential
ψ(r) and the tensor of local dielectric permittivity within
a self-consistent field approximation. The latter is a gen-
eralization of the classical PB theory for the case of an
explicit account of the polar polarizable co-solvent. If one
assumes that α̂ = α̂+ = 0 and εs = 1, then one arrives at
the expression which is obtained in the work [11]

ε(r) = 1 +
4πρcp

2

kBT
G(βp|∇ψ(r)|), (22)

where G(x) = sinh x
x2 L(x).

In the case of nonpolar co-solvent (p = 0), we obtain
the following expression for the tensor of local dielectric
permittivity:

ε̂(r) = εsI + 4πρcα̂e
∇ψ(r)α̂∇ψ(r)

2kBT

+ 4πρ+α̂+e
−

z+eψ(r)

kBT
+

∇ψ(r)α̂+∇ψ(r)

2kBT . (23)
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Finally, an excess electrostatic free energy of the solu-
tion can be written in the following form:

Fel[ψ] = − εs

8π

∫

V

dr(∇ψ(r))2

− ρ−kBT

∫

V

dr

(

e
−

z−eψ(r)

kBT − 1

)

− ρ+kBT

∫

V

dr

(

e
−

z+eψ(r)

kBT
+

∇ψ(r)α̂+∇ψ(r)

2kBT − 1

)

− ρckBT

∫

V

dr

(

e
∇ψ(r)α̂∇ψ(r)

2kBT
sinhβp|∇ψ(r)|

βp|∇ψ(r)| − 1

)

+

∫

V

drρext(r)ψ(r). (24)

The differential capacitance of the electric dou-

ble layer: effect of co-solvent polarizability and

permanent dipole. – As an illustration of the appli-
cation of the modified PB equation (19), (20), we formu-
late the generalized Gouy-Chapman theory [25,26]. We
consider a system containing a charged electrode, which
we shall model as a charged flat surface with a fixed sur-
face charge density σ, the point ions of 1:1 electrolyte
(z+ = −z− = 1), and the point molecules of the polar
polarizable co-solvent with a polarizability α̂ = αI and a
permanent dipole moment p. In this case the average con-
centrations of ions in the bulk are equal, i.e. ρ+ = ρ− = ρ.
For the sake of simplicity, we assume that α̂+ = 0.

Choosing the z-axis perpendicular to the electrode and
placing the origin on it, one can write the modified PB
equation in the following form:

d

dz
(ε(z)ψ′(z)) = 8πρe sinh βeψ(z), (25)

where the effective dielectric permittivity ε(z) takes the
form

ε(z) = εs + 4πρce
αψ′(z)2

2kBT
sinhβpψ′(z)

βpψ′(z)

×
(

α +
p2

kBT

L(βpψ′(z))

βpψ′(z)

)

. (26)

In order to obtain the electrostatic potential profile
ψ(z), we have to formulate the standard boundary
condition [26,28]

−ε(0)ψ′(0) = 4πσ. (27)

Using the standard method of integrating the equations
of this form, taking into account the second boundary
condition ψ′(∞) = 0, we can obtain the first integral of
eq. (25):

εsE2(z)

8π
+

E(z)
∫

0

D(E ′)dE ′ = 2ρkBT (cosh(βeψ(z))−1), (28)

where E(z) = −ψ′(z) is the electric field and the auxiliary
function D(E) takes the form

D(E) = ρce
αE2

2kBT
sinhβpE

βp

×
((

α +
p2

kBT

L(βpE)

βpE

)(

αE2

kBT
+ βpE coth βpE

)

+
p2

kBT

(

L′(βpE) − L(βpE)

βpE

))

. (29)

In the case of a nonpolar solvent (p = 0), the first inte-
gral (28) can be expressed through the elementary func-
tions as

εsE2(z)

8π
+ ρckBT

(

1 − e
αE2(z)
2kBT

)

+ ρcαE2(z)e
αE2(z)
2kBT =

2ρkBT (cosh βeψ(z) − 1). (30)

To integrate eq. (28), we should first solve it as a tran-
scendental equation with respect to E = −ψ′(z) at differ-
ent values of ψ. Thus, we obtain a function E = E(ψ). The
next step consists of solving the equation ψ′ = −E(ψ).

Before calculating the electrostatic potential profile
ψ(z), we estimate the differential capacitance C. As was
already pointed out in the introduction, this quantity
should be sensitive to an account of the co-solvent polar-
izability. The differential capacitance can be determined
by the following relation:

C =
dσ

dψ0
, (31)

where ψ0 = ψ(0) is the surface potential of the electrode,
which in contrast to the surface charge density σ is usually
an experimentally controllable parameter.

To perform the numerical calculations, we introduce
dimensionless parameters in the following way:

p̃ = p/elB , α̃ = α/l3Bεs, θ = l3Bρ, γ = l3Bρc, (32)

where lB = e2/εskBT is the Bjerrum length. More-
over, we introduce the dimensionless electrostatic poten-
tial u = βeψ, the electric field Ẽ = EβelB , and the distance
from the electrode z̃ = z/lB . We also introduce the di-
mensionless surface charge density σ̃ = σβelB/εs, which
is related to the dimensionless electric field at the elec-
trode Ẽ0 = Ẽ(0) via the boundary condition (27). The
latter can be rewritten in the dimensionless form as

(

1 + 4πγe
α̃

˜
E2
0

2 ξ(Ẽ0)

)

Ẽ0 = 4πσ̃, (33)

where ξ(Ẽ0) = sinh p̃Ẽ0

p̃Ẽ0

(

α̃ + p̃L(p̃Ẽ0)

Ẽ0

)

.

Further, using the definition of the reduced differential
capacitance

C̃ =
dσ̃

du0
, (34)

eq. (28) at z̃ = 0 is written in the dimensionless form

Ẽ2
0 + 8π

Ẽ0
∫

0

dvD̃(v) = 16πθ(cosh u0 − 1), (35)
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Fig. 1: (Colour on-line) (a) The differential capacitance C̃ as
a function of the surface potential u0 at different γ and at
fixed parameters α̃ = 10−3, θ = 10−3 and p̃ = 0. (b) The
differential capacitance as a function of the surface potential u0

at the different co-solvent polarizability α̃ and at fixed γ = 0.1,
θ = 10−3 and p̃ = 0.

after some algebra, one can obtain

C̃ =
2θ sinhu0

Ẽ0(u0)
, (36)

where the function Ẽ0 = Ẽ0(u0) is determined implicitly
through (35) and u0 = u(0). The dimensionless auxiliary
function D̃(v) has the following form:

D̃(v) = γe
α̃v2

2
sinh p̃v

p̃

×
((

α̃ + p̃
L(p̃v)

v

)

(α̃v2 + p̃v coth p̃v)

+ p̃2

(

L′(p̃v) − L(p̃v)

p̃v

))

. (37)

At γ → 0 we obtain Ẽ0 ≃ 4
√

2πθ sinh u0

2 . In this
case, we arrive at the well-known result obtained by
Grahame [29] in the framework of the standard Gouy-
Chapman model:

C̃ =

√

θ

2π
cosh

u0

2
. (38)

Figure 1(a) shows the differential capacitance as a func-
tion of the surface potential at different values of pa-
rameter γ and fixed values α̃ = 10−3, θ = 10−3, and
p̃ = 0 which approximately correspond to the real sys-
tems (such as benzene or toluene, dissolved in a dilute

Fig. 2: (Colour on-line) The dependences of the differential ca-
pacitance C̃ on the surface potential u0 at different permanent
dipole p̃ of the co-solvent. The data are shown for γ = 0.1,
θ = 10−3, α̃ = 0.

Fig. 3: (Colour on-line) The electrostatic potential profiles u(z̃)
at different values of the parameter γ. With the increase of co-
solvent concentration the electrostatic potential becomes sub-
stantially more long-ranged. The data are shown for α̃ = 0.005,
θ = 10−3, u0 = 10, p̃ = 0.

aqueous electrolyte solution). As can be seen from fig. 1,
the differential capacitance does not almost depend on the
co-solvent concentration at the small values of u0. How-
ever, adding the polarizable co-solvent at sufficiently large
surface potential leads to a significant increase in the dif-
ferential capacitance. The same trend takes place at in-
creasing the dimensionless co-solvent polarizability (see,
fig. 1(b)). Figure 2 demonstrates the dependences of the
differential capacitance on the surface potential at differ-
ent values of the dimensionless permanent dipole p̃ of the
co-solvent molecules. In contrast to the previous case,
when the polarizability increased, an increase of the co-
solvent permanent dipole leads only to a slight increase of
the differential capacitance. The dependences of the elec-
trostatic potential profiles u(z̃) at different γ are marked
in fig. 3. As it can be seen, the presence of a polarizable co-
solvent in the electric double layer makes the electrostatic
potential considerably more long-ranged.

Summary. – In this letter, in the framework of a field-
theoretical formalism we have derived a modified Poisson-
Boltzmann equation for the case of an explicit account
of a polarizable polar co-solvent. Moreover, an expres-
sion for the tensor of the local dielectric permittivity has
been obtained. As an important application of the de-
veloped mean-field theory, we have formulated a general-
ized Gouy-Chapman model of the flat electric double layer
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with the explicit account of the added polar polarizable co-
solvent. We have shown that adding the strong polarizable
co-solvent leads to a significant increase of the differen-
tial capacitance in a region of the sufficiently high surface
potentials of the electrode. We have also shown that in-
creasing the co-solvent polarizability leads to a significant
increase in the differential capacitance, while the growth of
the permanent dipole gives only a slight enhancement the
latter. As it follows from (35), (36) the differential capac-
itance is proportional to the value of the local dielectric
permittivity at the electrode. Thus, it should be sensi-
tive to a change of the co-solvent concentration as well
as the co-solvent polarizability (see eq. (26)). It explains
the dramatic behavior of the differential capacitance when
these variables increase. In addition, we have shown that
the presence of strongly polarizable co-solvent molecules
in the diffuse layer (at the large values of surface potential)
leads to a more long-ranged electrostatic potential profile.
This effect results from the fact that with an increase of
the local co-solvent concentration in the diffuse layer the
local dielectric permittivity increases. The latter leads to
a decrease of the electrode charge screening.

In conclusion, we would like to discuss the weak point of
the present theory and its possible generalization. First,
our model should be valid at the low co-solvent concen-
tration only. Second, within the present study we have
neglected the excluded-volume interactions for the ions
as well as for the co-solvent molecules. Nevertheless, as
Kornyshev clearly showed in the work [19], the excluded-
volume interactions should be also important in the region
of large surface potential for a correct evaluation of the dif-
ferential capacitance. Moreover, it is evident in advance
that the account of the excluded-volume interactions for
the co-solvent should decrease the discussed effect of the
increase of the differential capacitance. However, we be-
lieve that the latter is still significant even taking into
account the excluded volume of the co-solvent molecules
as well as the electrolyte ions. A discussion of the impor-
tance of the excluded-volume contributions together with
the polarizability and permanent dipole of the species on
the properties of the electric double layer is a subject of the
future publications.
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