Triple-parabola approximation for interfacial properties of binary mixtures of Bose-Einstein condensates
Zehui Deng  1@  , Bert Van Schaeybroeck  2  , Chang-You Lin  1  , Nguyen Van Thu  3  , Josep O. Indekeu  1@  
1 : Institute for Theoretical Physics, KU Leuven, Belgium
2 : Royal Meteorological Institute, BE-1180 Brussel, Belgium
3 : Department of Physics, Hanoi Pedagogical University 2, Vietnam

Accurate and useful analytic approximations are developed for order parameter profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates with repulsive inter-atomic forces. A triple-parabola approximation (TPA) is proposed, to represent closely the energy density featured in Gross-Pitaevskii (GP) theory. This TPA allows us to define a model, which is a handy alternative to full GP theory, while still possessing a simple analytic solution. The TPA offers an improvement over the recently introduced double-parabola approximation (DPA). In particular, a more accurate amplitude for the wall energy (of a single condensate) is derived and a more precise expression for the interfacial tension (of two condensates) is obtained, while also the interface profiles undergo a qualitative improvement [1].
1. Z. Deng, B. Van Schaeybroeck, C.-Y. Lin, N.V. Thu and J.O. Indekeu, Physica A 444, 1027 (2016).

 


Online user: 1