Langevin equations for reaction-diffusion processes
Charlie Duclut  1@  , Federico Benitez  2  , Hugues Chaté  3@  , Bertrand Delamotte  4@  , Ivan Dornic  5  , Miguel Muñoz  6  
1 : Laboratoire de Physique Théorique de la Matière Condensée  (LPTMC)  -  Website
CNRS : UMR7600, Université Pierre et Marie Curie (UPMC) - Paris VI
LPTMC, Tour 24, Boîte 121, 4, Place Jussieu, 75252 Paris Cedex 05, France -  France
2 : Max Planck Institute for Solid State Research  (Max Planck Institute)
Heisenbergstraße 1 - 70569 Stuttgart -  Germany
3 : Service de physique de l'état condensé  (SPEC - URA 2464)  -  Website
CEA, CNRS : URA2464
SPEC - URA 2464, CEA/Saclay, Orme des Merisiers, F-91191 GIF SUR YVETTE CEDEX -  France
4 : Laboratoire de Physique de la Matière Condensée  (LPTMC)  -  Website
Université Pierre et Marie Curie - Paris VI
4 Place Jussieu, Boîte 121, 75252 Cedex 05, Paris -  France
5 : CEA Saclay  (CEA)  -  Website
CEA
91191 Gif-sur-Yvette cedex -  France
6 : Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada

Langevin equations are ubiquitous in the modelization of out-of-equilibrium systems and provide a starting point both for numerical simulations and field theory approaches. Most of the time, these equations are derived in a phenomenological way by adding a noise term -- which is supposed to modelize the complicated microscopic degrees of freedom of the system -- to a deterministic mean-field equation. 

However, I will show in my presentation that it is possible for some systems (the reaction-diffusion processes) to start from the microscopic dynamics and, without any approximation, to obtain a Langevin equation that describes the system exactly (Benitez, Duclut et al., PRL 2016).

Obviously, this exact description of the system by a Langevin equation has a cost: The Langevin equation is not stated in terms of a "physical" variable but rather in terms of an "auxiliary" variable. I will however show that with the help of a duality relation, all the physics can be extracted from this auxiliary variable (Doering, Mueller, Smereka, Physica A 2003).

Since these Langevin equations are exact (and real) -- in particular in the low density regions -- they are the right starting point for numerical and theoretical studies of reaction-diffusion processes (Dornic, Chaté, Muñoz, PRL 2005).



  • Other
Online user: 1