Non-equilibrium dynamics of Ising-like systems at the critical point: a cuda implementation
1 : División de Ciencias e Ingenierías. Universidad de Guanajuato.
(DCI-UG)
-
Website
Lomas del Bosque #103. Lomas del Campestre. 37150, León, Guanajuato. -
Mexico
2 : Groupe de Physique Statistique, Département de Matière et des Matériaux, Institut Jean Lamour
(GPS-IJL)
-
Website
* : Corresponding author
Université de Lorraine, CNRS : UMR7198
B.P. 70239, F-54506, Vandoeuvre lès Nancy Cedex -
France
By means of Monte Carlo simulations of the critical Ising and Majority voter models with Glauber dynamics on two dimensional honeycomb lattices we found that the dynamic critical exponents for the Majority voter model are in good agreement with the reported values of the Ising model. We explain how the critical dynamic can be implemented correctly in the Majority voter model using cuda.